Dual supply translating transceiver; 3-state Rev. 03 — 19 January 2010

General description 1.

The 74LVC2T45; 74LVCH2T45 are dual bit, dual supply translating transceivers with 3-state outputs that enable bidirectional level translation. They feature two data input-output ports (nA and nB), a direction control input (DIR) and dual supply pins (V_{CC(A)} and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 1.2 V and 5.5 V making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins nA and DIR are referenced to V_{CC(A)} and pins nB are referenced to V_{CC(B)}. A HIGH on DIR allows transmission from nA to nB and a LOW on DIR allows transmission from nB to nA.

The devices are fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A port and B port are in the high-impedance OFF-state.

Active bus hold circuitry in the 74LVCH2T45 holds unused or floating data inputs at a valid logic level.

Features 2.

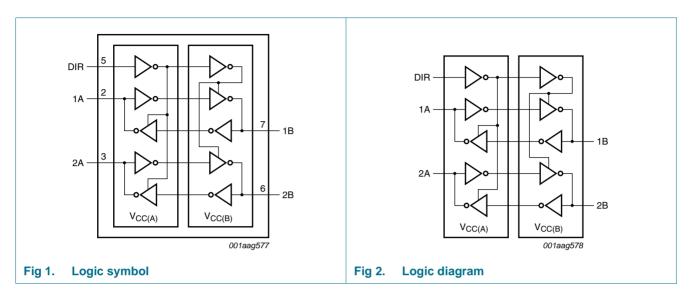
- Wide supply voltage range:
 - V_{CC(A)}: 1.2 V to 5.5 V
 - V_{CC(B)}: 1.2 V to 5.5 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
 - JESD36 (4.5 V to 5.5 V)
- ESD protection:
 - HBM JESD22-A114E Class 3A exceeds 4000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - 420 Mbps (3.3 V to 5.0 V translation)
 - 210 Mbps (translate to 3.3 V))
 - 140 Mbps (translate to 2.5 V)
 - 75 Mbps (translate to 1.8 V)
 - 60 Mbps (translate to 1.5 V)

Dual supply translating transceiver; 3-state

- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- ± 24 mA output drive (V_{CC} = 3.0 V)
- Inputs accept voltages up to 5.5 V
- Low power consumption: 16 μA maximum I_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

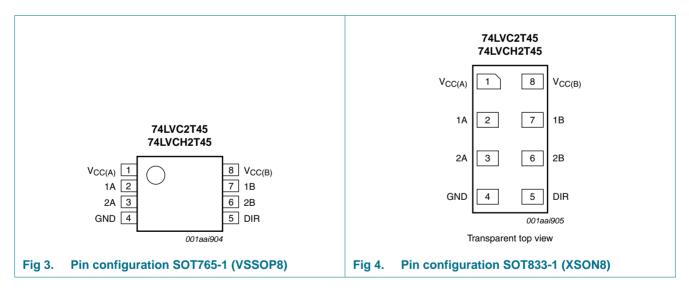
3. Ordering information

Table 1.Ordering information

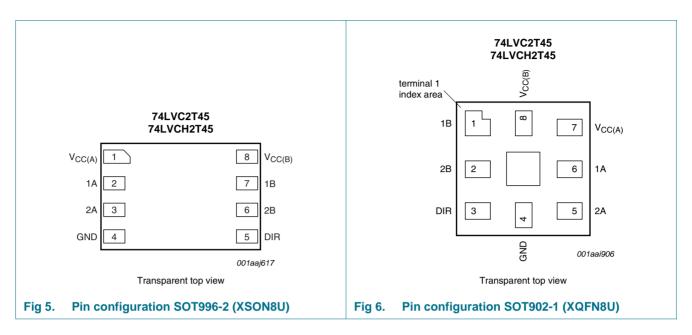

Type number	Package				
	Temperature range	Name	Description	Version	
74LVC2T45DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads;	SOT765-1	
74LVCH2T45DC			body width 2.3 mm		
74LVC2T45GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads;	SOT833-1	
74LVCH2T45GT			8 terminals; body 1 \times 1.95 \times 0.5 mm		
74LVC2T45GD	–40 °C to +125 °C	XSON8U	plastic extremely thin small outline package; no leads;	SOT996-2	
74LVCH2T45GD			8 terminals; UTLP based; body $3 \times 2 \times 0.5$ mm		
74LVC2T45GM	–40 °C to +125 °C	XQFN8U	plastic extremely thin quad flat package; no leads;	SOT902-1	
74LVCH2T45GM			8 terminals; UTLP based; body $1.6 \times 1.6 \times 0.5$ mm		

4. Marking

Table 2. Marking	
Type number	Marking code
74LVC2T45DC	V45
74LVCH2T45DC	X45
74LVC2T45GT	V45
74LVCH2T45GT	X45
74LVC2T45GD	V45
74LVCH2T45GD	X45
74LVC2T45GM	V45
74LVCH2T45GM	X45


Dual supply translating transceiver; 3-state

5. Functional diagram



6. Pinning information

6.1 Pinning

Dual supply translating transceiver; 3-state

6.2 Pin description

. ..

Symbol	Pin		Description
	SOT765-1, SOT833-1 and SOT996-2	SOT902-1	
V _{CC(A)}	1	7	supply voltage A (port A and DIR)
1A	2	6	data input or output
2A	3	5	data input or output
GND	4	4	ground (0 V)
DIR	5	3	direction control
2B	6	2	data input or output
1B	7	1	data input or output
V _{CC(B)}	8	8	supply voltage B (port B)

7. Functional description

Table 4.Function table^[1]

Supply voltage	Input	Input/output ^[2]		
V _{CC(A)} , V _{CC(B)}	DIR	nA	nB	
1.2 V to 5.5 V	L	nA = nB	input	
1.2 V to 5.5 V	Н	input	nB = nA	
GND ^[3]	Х	Z	Z	

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The input circuit of the data I/O is always active.

[3] When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+6.5	V
V _{CC(B)}	supply voltage B		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Ι _{ΟΚ}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	<u>[1][2][3]</u> _0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+6.5	V
I _O	output current	$V_{O} = 0 V \text{ to } V_{CCO}$	<u>[2]</u> _	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	<u>[4]</u> _	250	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K.
 For XSON8, XSON8U and XQFN8U packages: above 45 °C the value of P_{tot} derates linearly with 2.4 mW/K.

9. Recommended operating conditions

Table 6.	Recommended operating condit	ions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		1.2	5.5	V
V _{CC(B)}	supply voltage B		1.2	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	<u>[1]</u> 0	V _{CCO}	V
		Suspend or 3-state mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V _{CCI} = 1.2 V	[2] _	20	ns/V
		V _{CCI} = 1.4 V to 1.95 V	-	20	ns/V
		V_{CCI} = 2.3 V to 2.7 V	-	20	ns/V
		$V_{CCI} = 3 V \text{ to } 3.6 V$	-	10	ns/V
		$V_{CCI} = 4.5 V \text{ to } 5.5 V$	-	5	ns/V

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

10. Static characteristics

Table 7. Typical static characteristics at T_{amb} = 25 °C

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$	<u>[1]</u>			
		$I_0 = -3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	-	1.09	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		$I_0 = 3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	<u>[1]</u> _	0.07	-	V
lı	input leakage current	DIR input; $V_I = 0 V$ to 5.5 V; $V_{CCI} = 1.2 V$ to 5.5 V	[2] _	-	±1	μA
I _{BHL}	bus hold LOW current	A or B port; V_I = 0.42 V; V_{CCI} = 1.2 V	[2] _	19	-	μA
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78$ V; $V_{CCI} = 1.2$ V	[2] _	-19	-	μA
I _{BHLO}	bus hold LOW overdrive current	A or B port; $V_{CCI} = 1.2 V$	<u>[2][3]</u> _	19	-	μΑ
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CCI} = 1.2 V$	<u>[2][3]</u> _	-19	-	μΑ
I _{OZ}	OFF-state output current	A or B port; $V_0 = 0$ V or V_{CCO} ; $V_{CCO} = 1.2$ V to 5.5 V	[1] -	-	±1	μΑ
I _{OFF}	power-off leakage current	A port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(A)} = 0 V; V _{CC(B)} = 1.2 V to 5.5 V	-	-	±1	μΑ
		B port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 1.2 V to 5.5 V	-	-	±1	μΑ
CI	input capacitance	DIR input; $V_I = 0 V \text{ or } 3.3 V$; $V_{CC(A)} = V_{CC(B)} = 3.3 V$	-	2.2	-	pF
C _{I/O}	input/output capacitance	A and B port; suspend mode; $V_O = 3.3 \text{ V or } 0 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	6.0	-	pF

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] To guarantee the node switches, an external driver must source/sink at least I_{BHLO} / I_{BHHO} when the input is in the range V_{IL} to V_{IH}.

Dual supply translating transceiver; 3-state

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °C to	o +85 °C	–40 °C to	Uni	
				Min	Max	Min	Max	
VIH	HIGH-level	data input	[2]			1	1	
	input voltage	$V_{CCI} = 1.2 V$		0.8V _{CCI}	-	0.8V _{CCI}	-	V
		$V_{CCI} = 1.4 \text{ V to } 1.95 \text{ V}$		0.65V _{CCI}	-	0.65V _{CCI}	-	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.7	-	1.7	-	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		2.0	-	2.0	-	V
		$V_{CCI} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		0.7V _{CCI}	-	0.7V _{CCI}	-	V
		DIR input						
		V _{CCI} = 1.2 V		0.8V _{CC(A)}	-	0.8V _{CC(A)}	-	V
		$V_{CCI} = 1.4 \text{ V}$ to 1.95 V		0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.7	-	1.7	-	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		2.0	-	2.0	-	V
		$V_{CCI} = 4.5 \text{ V}$ to 5.5 V		$0.7V_{CC(A)}$	-	0.7V _{CC(A)}	-	V
/ _{IL}	LOW-level	data input	[2]					
	input voltage	V _{CCI} = 1.2 V		-	0.2V _{CCI}	-	0.2V _{CCI}	V
		$V_{CCI} = 1.4 \text{ V}$ to 1.95 V		-	0.35V _{CCI}	-	0.35V _{CCI}	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	0.8	-	0.8	V
		$V_{CCI} = 4.5 \text{ V}$ to 5.5 V		-	0.3V _{CCI}	-	0.3V _{CCI}	V
		DIR input						
		V _{CCI} = 1.2 V		-	0.2V _{CC(A)}	-	0.2V _{CC(A)}	V
		$V_{CCI} = 1.4 \text{ V} \text{ to } 1.95 \text{ V}$		-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		$V_{CCI} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	0.8	-	0.8	V
		$V_{CCI} = 4.5 \text{ V}$ to 5.5 V		-	$0.3V_{CC(A)}$	-	0.3V _{CC(A)}	V
V _{OH}	HIGH-level	$V_{I} = V_{IH}$						
	output voltage	$I_{O} = -100 \ \mu$ A; V _{CCO} = 1.2 V to 4.5 V	<u>[1]</u>	$V_{CCO}-0.1$	-	$V_{CCO}-0.1$	-	V
		$I_{O} = -6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		1.0	-	1.0	-	V
		$I_{O} = -8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		1.2	-	1.2	-	V
		$I_{O} = -12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		1.9	-	1.9	-	V
		$I_{O} = -24$ mA; $V_{CCO} = 3.0$ V		2.4	-	2.4	-	V
		I_{O} = -32 mA; V_{CCO} = 4.5 V		3.8	-	3.8	-	V

Dual supply translating transceiver; 3-state

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			-	Min	Max	Min	Max	
/ _{OL}	LOW-level	$V_{I} = V_{IL}$	<u>[1]</u>					
	output voltage	I _O = 100 μA; V _{CCO} = 1.2 V to 4.5 V		-	0.1	-	0.1	V
		$I_0 = 6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$		-	0.3	-	0.3	V
		$I_0 = 8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$		-	0.45	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$		-	0.3	-	0.3	V
		$I_0 = 24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$		-	0.55	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$		-	0.55	-	0.55	V
I	input leakage current	DIR input; $V_I = 0 V$ to 5.5 V; $V_{CCI} = 1.2 V$ to 5.5 V		-	±2	-	±10	μA
BHL	bus hold LOW current	A or B port	[2]					
		$V_{I} = 0.49 \text{ V}; V_{CCI} = 1.4 \text{ V}$		15	-	10	-	μA
		$V_{I} = 0.58 \text{ V}; V_{CCI} = 1.65 \text{ V}$		25	-	20	-	μA
		$V_{I} = 0.70 \text{ V}; V_{CCI} = 2.3 \text{ V}$		45	-	45	-	μA
		$V_{I} = 0.80 \text{ V}; V_{CCI} = 3.0 \text{ V}$		100	-	80	-	μΑ
		$V_{I} = 1.35 \text{ V}; V_{CCI} = 4.5 \text{ V}$		100	-	100	-	μA
Внн	bus hold HIGH current	A or B port	[2]					
		$V_{I} = 0.91 \text{ V}; V_{CCI} = 1.4 \text{ V}$		-15	-	-10	-	μΑ
		$V_{I} = 1.07 V; V_{CCI} = 1.65 V$		-25	-	-20	-	μA
		$V_{I} = 1.60 \text{ V}; V_{CCI} = 2.3 \text{ V}$		-45	-	-45	-	μA
		$V_{I} = 2.00 \text{ V}; V_{CCI} = 3.0 \text{ V}$		-100	-	-80	-	μA
		$V_{I} = 3.15 \text{ V}; V_{CCI} = 4.5 \text{ V}$		-100	-	-100	-	μA
BHLO	bus hold LOW	A or B port	[2][3]					
	overdrive current	$V_{CCI} = 1.6 V$		125	-	125	-	μA
		V _{CCI} = 1.95 V		200	-	200	-	μA
		$V_{CCI} = 2.7 V$		300	-	300	-	μA
		$V_{CCI} = 3.6 V$		500	-	500	-	μA
		$V_{CCI} = 5.5 V$		900	-	900	-	μA
внно	bus hold HIGH	· · ·	[2][3]					
	overdrive current	V _{CCI} = 1.6 V		-125	-	-125	-	μA
	ourion	V _{CCI} = 1.95 V		-200	-	-200	-	μA
		$V_{CCI} = 2.7 V$		-300	-	-300	-	μA
		$V_{CCI} = 3.6 V$		-500	-	-500	-	μA
		$V_{CCI} = 5.5 V$		-900	-	-900	-	μA
ΟZ	OFF-state output current	A or B port; $V_0 = 0$ V or V_{CCO} ; $V_{CCO} = 1.2$ V to 5.5 V	<u>[1]</u>	-	±2	-	±10	μA

Dual supply translating transceiver; 3-state

Symbol Parameter Conditions -40 °C to +85 °C -40 °C to +125 °C Unit Min Max Max Min power-off A port; V_1 or $V_0 = 0$ V to 5.5 V; μΑ +2 ±10 **I**OFF _ leakage $V_{CC(A)} = 0 V;$ V_{CC(B)} = 1.2 V to 5.5 V current B port; V_1 or $V_0 = 0$ V to 5.5 V; ±2 _ ±10 μΑ _ $V_{CC(B)} = 0 V;$ $V_{CC(A)} = 1.2 \text{ V to } 5.5 \text{ V}$ Icc supply current A port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A [2] $V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V -8 -8 μA 3 3 $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V μA -2 2 $V_{CC(A)} = 5.5 \text{ V}; V_{CC(B)} = 0 \text{ V}$ -μA $V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$ -2 --2 μA B port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A $V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V -8 -8 μA $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V -3 -3 μA $V_{CC(B)} = 0 V; V_{CC(A)} = 5.5 V$ -2 --2 μA 2 2 $V_{CC(B)} = 5.5 \text{ V}; V_{CC(A)} = 0 \text{ V}$ -μA A plus B port $(I_{CC(A)} + I_{CC(B)});$ $I_{O} = 0 A; V_{I} = 0 V \text{ or } V_{CCI}$ $V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V 16 16 μA -- $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V 4 4 μΑ - ΔI_{CC} additional per input: supply current $V_{CC(A)}$, $V_{CC(B)} = 3.0$ V to 5.5 V A port; A port at $V_{CC(A)} - 0.6$ V; [4] 50 75 μA DIR at V_{CC(A)}; B port = open DIR input; DIR at $V_{CC(A)} - 0.6$ V; 75 _ 50 μΑ A port at V_{CC(A)} or GND; B port = open [4] B port; B port at $V_{CC(B)} - 0.6$ V; 50 75 μΑ DIR at GND; A port = open

Table 8. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] To guarantee the node switches, an external driver must source/sink at least IBHLO / IBHHO when the input is in the range VIL to VIH.

[4] For non bus hold parts only (74LVC2T45).

Dual supply translating transceiver; 3-state

11. Dynamic characteristics

Table 9. Typical dynamic characteristics at $V_{CC(A)} = 1.2$ V and $T_{amb} = 25$ °C

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 9</u>; for waveforms see <u>Figure 7</u> and <u>Figure 8</u>.

-		-							
Symbol	Parameter	Conditions		V _{CC(B)}					Unit
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{PLH}	LOW to HIGH	A to B	10.6	8.1	7.0	5.8	5.3	5.1	ns
	propagation delay	B to A	10.6	9.5	9.0	8.5	8.3	8.2	ns
t _{PHL}	HIGH to LOW	A to B	10.1	7.1	6.0	5.3	5.2	5.4	ns
	propagation delay	B to A	10.1	8.6	8.1	7.8	7.6	7.6	ns
t _{PHZ}	HIGH to OFF-state propagation delay	DIR to A	9.4	9.4	9.4	9.4	9.4	9.4	ns
		DIR to B	12.0	9.4	9.0	7.8	8.4	7.9	ns
t _{PLZ}	LOW to OFF-state	DIR to A	7.1	7.1	7.1	7.1	7.1	7.1	ns
	propagation delay	DIR to B	9.5	7.8	7.7	6.9	7.6	7.0	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	20.1	17.3	16.7	15.4	15.9	15.2	ns
	propagation delay	DIR to B	17.7	15.2	14.1	12.9	12.4	12.2	ns
t _{PZL}	OFF-state to LOW propagation delay	DIR to A [1]	22.1	18.0	17.1	15.6	16.0	15.5	ns
		DIR to B	19.5	16.5	15.4	14.7	14.6	14.8	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times".

Table 10. Typical dynamic characteristics at $V_{CC(B)} = 1.2$ V and $T_{amb} = 25$ °C

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 9</u>; for waveforms see <u>Figure 7</u> and <u>Figure 8</u>.

Symbol	Parameter	Conditions			Vc	C(A)			Unit
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V	
t _{PLH}	LOW to HIGH	A to B	10.6	9.5	9.0	8.5	8.3	8.2	ns
	propagation delay	B to A	10.6	8.1	7.0	5.8	5.3	5.1	ns
t _{PHL}	HIGH to LOW propagation delay	A to B	10.1	8.6	8.1	7.8	7.6	7.6	ns
		B to A	10.1	7.1	6.0	5.3	5.2	5.4	ns
t _{PHZ}	HIGH to OFF-state propagation delay	DIR to A	9.4	6.5	5.7	4.1	4.1	3.0	ns
		DIR to B	12.0	6.1	5.4	4.6	4.3	4.0	ns
t _{PLZ}	LOW to OFF-state propagation delay	DIR to A	7.1	4.9	4.5	3.2	3.4	2.5	ns
		DIR to B	9.5	7.3	6.6	5.9	5.7	5.6	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	20.1	15.4	13.6	11.7	11.0	10.7	ns
	propagation delay	DIR to B	17.7	14.4	13.5	11.7	11.7	10.7	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	22.1	13.2	11.4	9.9	9.5	9.4	ns
	propagation delay	DIR to B [1]	19.5	15.1	13.8	11.9	11.7	10.6	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times".

Dual supply translating transceiver; 3-state

Table 11. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \circ C \frac{[1][2]}{C}$

voitages	are referenced to G	ND (ground = 0 V).							
Symbol	Parameter	Conditions		V _{CC(A)} and V _{CC(B)}					
			1.8 V	2.5 V	3.3 V	5.0 V			
C _{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	2	3	3	4	pF		
		A port: (direction B to A); B port: (direction A to B)	15	16	16	18	pF		

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

Table 12. Dynamic characteristics for temperature range –40 °C to +85 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8.

Symbol	Parameter	Conditions					Vcc	:(В)					Unit
			1.5 V ±	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V =	± 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} =$	1.4 V to 1.6 V												
t _{PLH}	LOW to HIGH	A to B	2.8	21.3	2.4	17.6	2.0	13.5	1.7	11.8	1.6	10.5	ns
	propagation delay	B to A	2.8	21.3	2.6	19.1	2.3	14.9	2.3	12.4	2.2	12.0	ns
t _{PHL}	HIGH to LOW	A to B	2.6	19.3	2.2	15.3	1.8	11.8	1.7	10.9	1.7	10.8	ns
	propagation delay	B to A	2.6	19.3	2.4	17.3	2.3	13.2	2.2	11.3	2.3	11.0	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	ns
	propagation delay	DIR to B	3.5	24.8	3.5	23.6	3.0	11.0	3.3	11.3	2.8	10.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	ns
	propagation delay	DIR to B	2.8	18.3	3.0	17.2	2.5	9.4	3.0	10.1	2.5	9.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	39.6	-	36.3	-	24.3	-	22.5	-	21.4	ns
	propagation delay	DIR to B [1]	-	32.7	-	29.0	-	24.9	-	23.2	-	21.9	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	44.1	-	40.9	-	24.2	-	22.6	-	21.3	ns
	propagation delay	DIR to B [1]	-	38.0	-	34.0	-	30.5	-	29.6	-	29.5	ns
$V_{CC(A)} =$	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.6	19.1	2.2	17.7	2.2	9.3	1.7	7.2	1.4	6.8	ns
	propagation delay	B to A	2.4	17.6	2.2	17.7	2.3	16.0	2.1	15.5	1.9	15.1	ns
t _{PHL}	HIGH to LOW	A to B	2.4	17.3	2.0	14.3	1.6	8.5	1.8	7.1	1.7	7.0	ns
	propagation delay	B to A	2.2	15.3	2.0	14.3	2.1	12.9	2.0	12.6	1.8	12.2	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	ns
	propagation delay	DIR to B	3.2	24.1	3.2	21.9	2.7	11.5	3.0	10.3	2.5	8.2	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	ns
	propagation delay	DIR to B	2.5	17.6	2.6	16.0	2.2	9.2	2.7	8.4	2.4	7.1	ns

Dual supply translating transceiver; 3-state

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8.

Symbol	Parameter	Condition	าร					Vcc	C(B)					Unit
				1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V ±	± 0.5 V	
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PZH}	OFF-state to HIGH	DIR to A	<u>[1]</u>	-	35.2	-	33.7	-	25.2	-	23.9	-	22.2	ns
	propagation delay	DIR to B	[1]	-	29.6	-	28.2	-	19.8	-	17.7	-	17.3	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	39.4	-	36.2	-	24.4	-	22.9	-	20.4	ns
	propagation delay	DIR to B	[1]	-	34.4	-	31.4	-	25.6	-	24.2	-	24.1	ns
V _{CC(A)} =	2.3 V to 2.7 V													
t _{PLH}	LOW to HIGH	A to B		2.3	17.9	2.3	16.0	1.5	8.5	1.3	6.2	1.1	4.8	ns
	propagation delay	B to A		2.0	13.5	2.2	9.3	1.5	8.5	1.4	8.0	1.0	7.5	ns
t _{PHL}	HIGH to LOW	A to B		2.3	15.8	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	ns
	propagation delay	B to A		1.8	11.8	1.9	8.5	1.4	7.5	1.3	7.0	0.9	6.2	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	ns
	propagation delay	DIR to B		3.0	22.5	3.0	21.4	2.5	11.0	2.8	9.3	2.3	6.9	ns
t _{PLZ}	LOW to OFF-state	DIR to A		1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	ns
	propagation delay	DIR to B		2.3	14.6	2.5	13.2	2.0	9.0	2.5	8.4	1.8	5.8	ns
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	-	28.1	-	22.5	-	17.5	-	16.4	-	13.3	ns
	propagation delay	DIR to B	[1]	-	23.7	-	21.8	-	14.3	-	12.0	-	10.6	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	34.3	-	29.9	-	18.5	-	16.3	-	13.1	ns
	propagation delay	DIR to B	[1]	-	23.9	-	21.0	-	15.6	-	13.5	-	12.7	ns
V _{CC(A)} =	3.0 V to 3.6 V													
t _{PLH}	LOW to HIGH	A to B		2.3	17.1	2.1	15.5	1.4	8.0	0.8	5.6	0.7	4.4	ns
	propagation delay	B to A		1.7	11.8	1.7	7.2	1.3	6.2	0.7	5.6	0.6	5.4	ns
t _{PHL}	HIGH to LOW	A to B		2.2	15.6	2.0	12.6	1.3	7.0	0.8	5.0	0.7	4.0	ns
	propagation delay	B to A		1.7	10.9	1.8	7.1	1.3	5.4	0.8	5.0	0.7	4.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		2.3	7.3	2.3	7.3	2.3	7.3	2.3	7.3	2.7	7.3	ns
	propagation delay	DIR to B		2.9	18.0	2.9	16.5	2.3	10.1	2.7	8.6	2.2	6.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A		2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	ns
	propagation delay	DIR to B		2.3	13.6	2.4	12.5	1.9	7.8	2.3	7.1	1.7	4.9	ns
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	-	25.4	-	19.7	-	14.0	-	12.7	-	10.3	ns
	propagation delay	DIR to B	[1]	-	22.7	-	21.1	-	13.6	-	11.2	-	10.0	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	28.9	-	23.6	-	15.5	-	13.6	-	10.8	ns
	propagation delay	DIR to B	[1]	-	22.9	-	19.9	-	14.3	-	12.3	-	11.3	ns
V _{CC(A)} =	4.5 V to 5.5 V													
t _{PLH}	LOW to HIGH	A to B		2.2	16.6	1.9	15.1	1.0	7.5	0.7	5.4	0.5	3.9	ns
	propagation delay	B to A		1.6	10.5	1.4	6.8	1.0	4.8	0.7	4.4	0.5	3.9	ns
t _{PHL}	HIGH to LOW	A to B		2.3	15.3	1.8	12.2	1.0	6.2	0.7	4.5	0.5	3.5	ns
	propagation delay	B to A		1.7	10.8	1.7	7.0	0.9	4.6	0.7	4.0	0.5	3.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	ns
	propagation delay	DIR to B		2.9	17.3	2.9	16.1	2.3	9.7	2.7	8.0	2.5	5.7	ns

Dual supply translating transceiver; 3-state

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8.

Symbol	Parameter	Conditions	V _{CC(B)} L							Unit			
			1.5 V \pm 0.1 V 1		$1.8~V \pm 0.15~V \ \ 2.5~V \pm 0.2~V$		3.3 V \pm 0.3 V 5.0 V \pm 0.5 V						
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PLZ}	LOW to OFF-state	DIR to A	1.4	3.7	1.4	3.7	1.3	3.7	1.0	3.7	0.9	3.7	ns
propagation delay	DIR to B	2.3	13.1	2.4	12.1	1.9	7.4	2.3	7.0	1.8	4.5	ns	
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	23.6	-	18.9	-	12.2	-	11.4	-	8.4	ns
	propagation delay	DIR to B [1]	-	20.3	-	18.8	-	11.2	-	9.1	-	7.6	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	28.1	-	23.1	-	14.3	-	12.0	-	9.2	ns
	propagation delay	DIR to B [1]	-	20.7	-	17.6	-	11.6	-	9.9	-	8.9	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in <u>Section 14.4 "Enable times"</u>.

Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8.

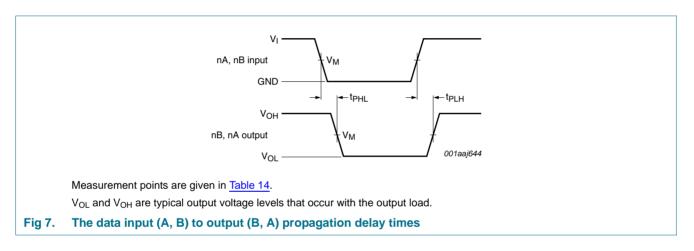
Symbol	Parameter	Conditions					Vcc	с(В)					Unit
			1.5 V ±	± 0.1 V	1.8 V ±	0.15 V	2.5 V :		3.3 V =	± 0.3 V	5.0 V ±	± 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} =$	1.4 V to 1.6 V												
t _{PLH}	LOW to HIGH	A to B	2.5	23.5	2.1	19.4	1.8	14.9	1.5	13.0	1.4	11.6	ns
	propagation delay	B to A	2.5	23.5	2.3	21.1	2.0	16.4	2.0	13.7	1.9	13.2	ns
t _{PHL}	HIGH to LOW	A to B	2.3	21.3	1.9	16.9	1.6	13.0	1.5	12.0	1.5	11.9	ns
	propagation delay	B to A	2.3	21.3	2.1	19.1	2.0	14.6	1.9	12.5	2.0	12.1	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	ns
	propagation delay	DIR to B	3.1	27.3	3.1	26.0	2.7	12.1	2.9	12.5	2.5	11.4	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	ns
	propagation delay	DIR to B	2.5	20.2	2.7	19.0	2.2	10.4	2.7	11.2	2.2	10.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	43.7	-	40.1	-	26.8	-	24.9	-	23.6	ns
	propagation delay	DIR to B [1]	-	36.1	-	32.0	-	27.5	-	25.6	-	24.2	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	48.6	-	45.1	-	26.7	-	25.0	-	23.5	ns
	propagation delay	DIR to B [1]	-	41.9	-	37.5	-	33.6	-	32.6	-	32.5	ns
$V_{CC(A)} =$	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.3	21.1	1.9	19.5	1.9	10.3	1.5	8.0	1.2	7.5	ns
	propagation delay	B to A	2.1	19.4	1.9	19.5	2.0	17.6	1.8	17.1	1.7	16.7	ns
t _{PHL}	HIGH to LOW	A to B	2.1	19.1	1.8	15.8	1.4	9.4	1.6	7.9	1.5	7.7	ns
	propagation delay	B to A	1.9	16.9	1.8	15.8	1.8	14.2	1.8	13.9	1.6	13.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	ns
	propagation delay	DIR to B	2.8	26.6	2.8	24.1	2.4	12.7	2.7	11.4	2.2	9.1	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	ns
	propagation delay	DIR to B	2.2	19.4	2.3	17.6	1.9	10.2	2.4	9.3	2.1	7.9	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	38.8	-	37.1	-	27.8	-	26.4	-	24.6	ns
	propagation delay	DIR to B [1]	-	32.7	-	31.1	-	21.9	-	19.6	-	19.1	ns

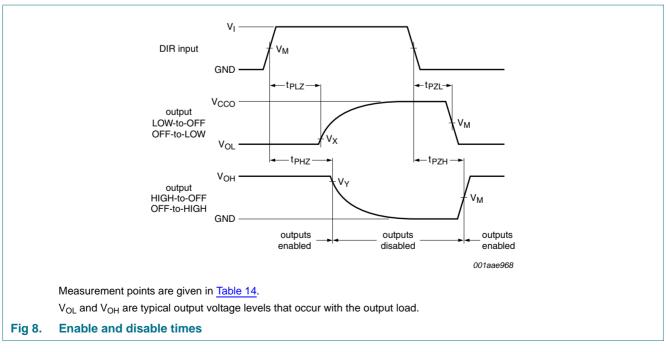
Dual supply translating transceiver: 3-state

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8. Symbol Parameter Conditions V_{CC(B)} Unit 1.5 V \pm 0.1 V | 1.8 V \pm 0.15 V | 2.5 V \pm 0.2 V | 3.3 V \pm 0.3 V 5.0 V \pm 0.5 V Min Min Min Max Min Max Min Max Max Max [1] OFF-state to LOW DIR to A 43.5 39.9 26.9 25.3 22.6 ----ns t_{PZL} propagation delay DIR to B [1] 38.0 34.7 26.8 --_ 28.3 --26.6 ns $V_{CC(A)} = 2.3 V \text{ to } 2.7 V$ LOW to HIGH 2.0 19.7 2.0 17.6 1.3 9.4 6.9 0.9 5.3 A to B 1.1 ns t_{PLH} propagation delay B to A 14.9 1.9 10.3 1.3 9.4 1.2 0.9 1.8 8.8 8.3 ns 17.4 HIGH to LOW A to B 2.0 1.8 14.2 1.2 8.3 1.1 6.0 0.8 5.1 ns t_{PHL} propagation delay B to A 1.6 13.0 1.7 9.4 1.2 8.3 1.1 7.7 0.8 6.9 ns HIGH to OFF-state 9.0 1.8 1.8 9.0 1.8 9.0 1.8 9.0 DIR to A 1.8 9.0 ns t_{PHZ} propagation delay DIR to B 2.7 24.8 2.7 2.2 10.3 7.6 23.6 12.1 2.5 2.0 ns LOW to OFF-state DIR to A 1.5 6.4 1.5 6.4 1.5 6.4 1.5 6.4 1.5 6.4 ns t_{PLZ} propagation delay DIR to B 2.2 2.2 9.3 2.0 16.1 14.6 1.8 9.9 1.6 6.4 ns DIR to A [1] 24.9 18.1 OFF-state to HIGH -31.0 -19.3 -14.7 -ns t_{PZH} propagation delay [1] DIR to B 26.1 24.0 15.8 13.3 -----11.7 ns [1] DIR to A 37.8 33.0 18.0 OFF-state to LOW ---20.4 --14.5 ns t_{P71} propagation delay DIR to B [1] -26.4 _ 23.2 17.3 _ 15.0 -14.1 ns V_{CC(A)} = 3.0 V to 3.6 V LOW to HIGH 1.2 A to B 2.0 18.9 1.8 17.1 8.8 0.7 6.2 0.6 4.9 t_{PLH} ns propagation delay 1.5 1.5 0.5 B to A 13.0 8.0 6.9 0.6 6.2 6.0 1.1 ns 17.2 1.8 7.7 0.6 HIGH to LOW A to B 1.9 13.9 1.1 0.7 5.5 4.4 ns t_{PHL} propagation delay 1.6 7.9 0.7 0.6 B to A 1.5 12.0 1.1 6.0 5.5 5.0 ns HIGH to OFF-state DIR to A 2.0 8.1 2.0 8.1 2.0 8.1 2.0 8.1 2.4 8.1 t_{PHZ} ns propagation delay DIR to B 2.6 19.8 2.6 18.2 2.0 11.2 2.4 9.5 1.9 7.0 ns LOW to OFF-state 1.8 6.2 6.2 6.2 DIR to A 1.8 6.2 1.8 1.8 1.8 6.2 t_{PLZ} ns propagation delay DIR to B 7.9 2.0 15.0 2.1 13.8 1.7 8.6 2.0 1.5 5.4 ns OFF-state to HIGH DIR to A [1] 28.0 -21.8 15.5 14.1 -11.4 ns --t_{PZH} propagation delay [1] DIR to B 12.4 -25.1 -23.3 -15.0 --11.1 ns [1] OFF-state to LOW DIR to A 31.8 _ 26.1 17.2 15.0 -12.0 --t_{PZL} ns propagation delay DIR to B [1] -25.3 _ 22.0 15.8 13.6 -12.5 -ns V_{CC(A)} = 4.5 V to 5.5 V LOW to HIGH 18.3 1.7 16.7 0.9 0.6 6.0 0.4 4.3 A to B 1.9 8.3 ns t_{PLH} propagation delay B to A 1.4 11.6 1.2 7.5 0.9 5.3 0.6 4.9 0.4 4.3 ns HIGH to LOW A to B 2.0 16.9 1.6 13.5 0.9 6.9 0.6 5.0 0.4 3.9 ns t_{PHL} propagation delay B to A 1.5 7.7 5.1 0.6 4.4 0.4 1.5 11.9 0.8 3.9 ns HIGH to OFF-state DIR to A 1.5 6.0 1.5 6.0 1.5 6.0 1.5 6.0 1.5 6.0 ns t_{PHZ} propagation delay DIR to B 2.6 19.1 2.6 17.8 2.0 10.7 2.4 8.8 2.2 6.3 ns LOW to OFF-state DIR to A 1.2 4.1 1.2 0.9 4.1 0.8 4.1 4.1 4.1 1.1 ns t_{PLZ} propagation delay DIR to B 2.0 14.5 2.1 13.4 1.7 8.2 2.0 7.7 1.6 5.0 ns

Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C ... continued

Dual supply translating transceiver; 3-state


Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C ...continued


Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9; for wave forms see Figure 7 and Figure 8.

Symbol	Parameter	Conditions		V _{CC(B)} U								Unit	
			1.5 V ±	.5 V \pm 0.1 V 1		1.8 V \pm 0.15 V $$ 2		$\textbf{2.5 V} \pm \textbf{0.2 V}$		3.3 V \pm 0.3 V		5.0 V \pm 0.5 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	26.1	-	20.9	-	13.5	-	12.6	-	9.3	ns
	propagation delay	DIR to B [1]	-	22.4	-	20.8	-	12.4	-	10.1	-	8.4	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	31.0	-	25.5	-	15.8	-	13.2	-	10.2	ns
	propagation delay	DIR to B [1]	-	22.9	-	19.5	-	12.9	-	11.0	-	9.9	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in <u>Section 14.4 "Enable times"</u>.

12. Waveforms

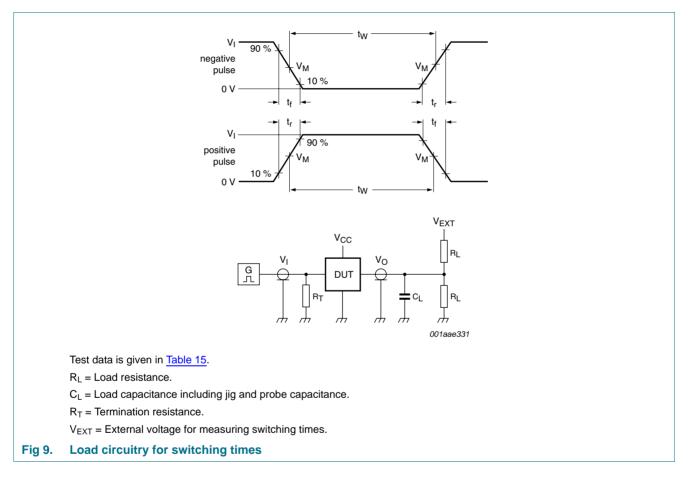
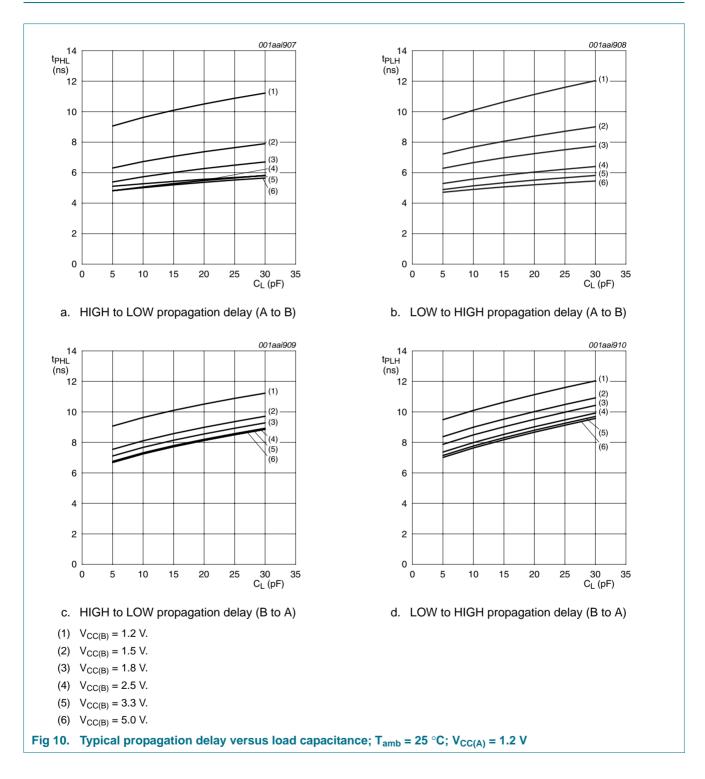

Dual supply translating transceiver; 3-state

Table 14. Weasurer	able 14. Measurement points									
Supply voltage	Input ^[1]	Output ^[2]								
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y						
1.2 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V						
1.65 V to 2.7 V	0.5V _{CCI}	$0.5V_{CCO}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
3.0 V to 5.5 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V						

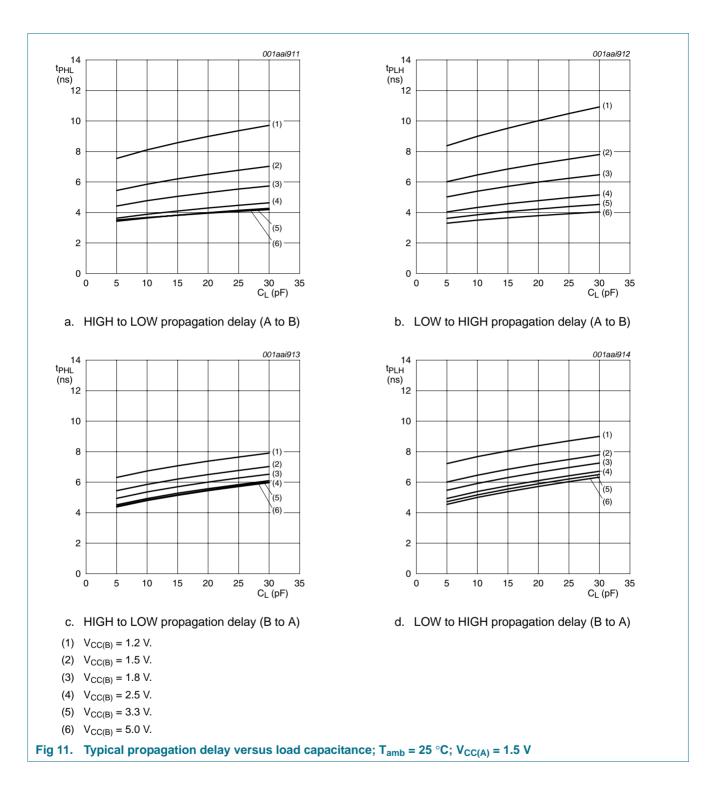
Table 14. Measurement points

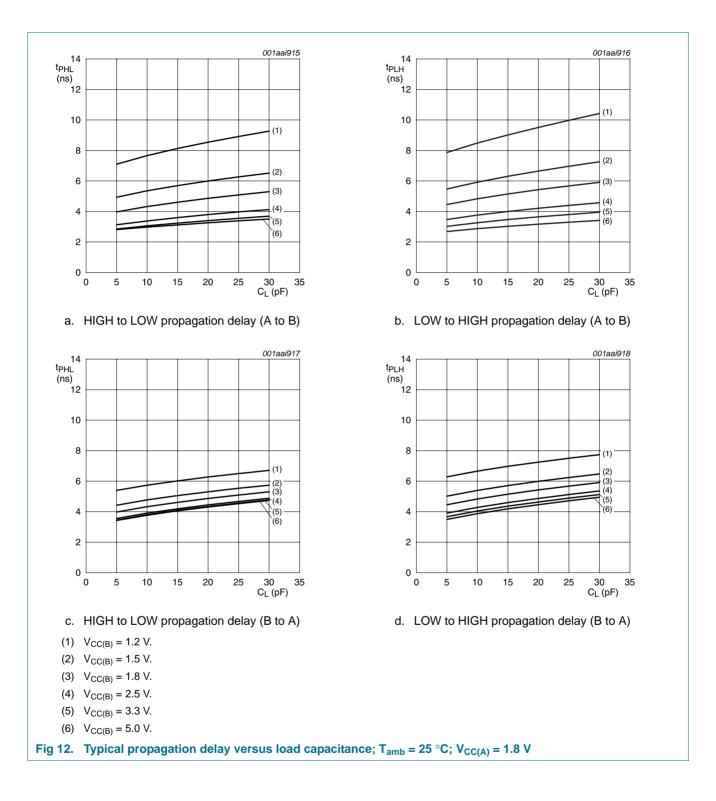
[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

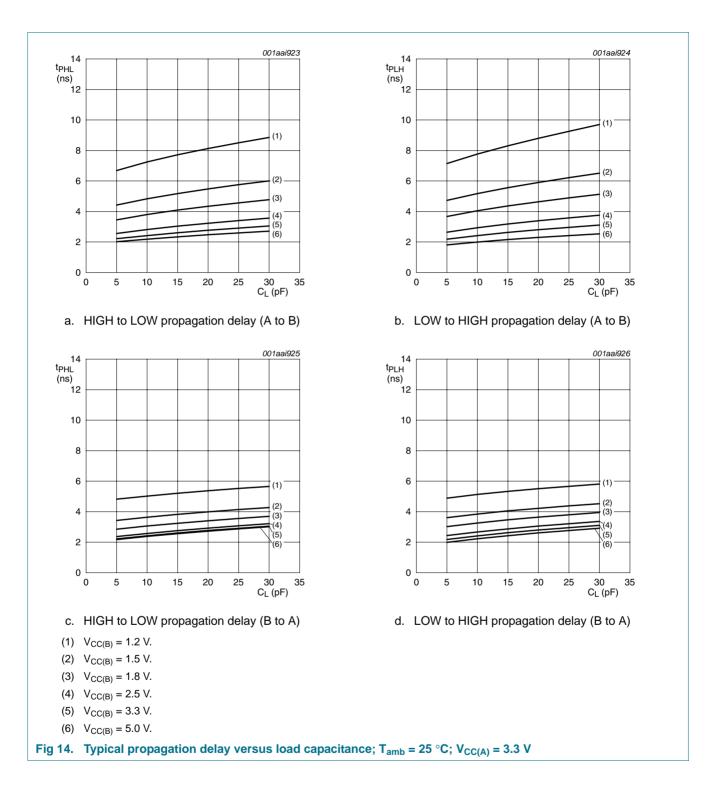

Table 15. Test data

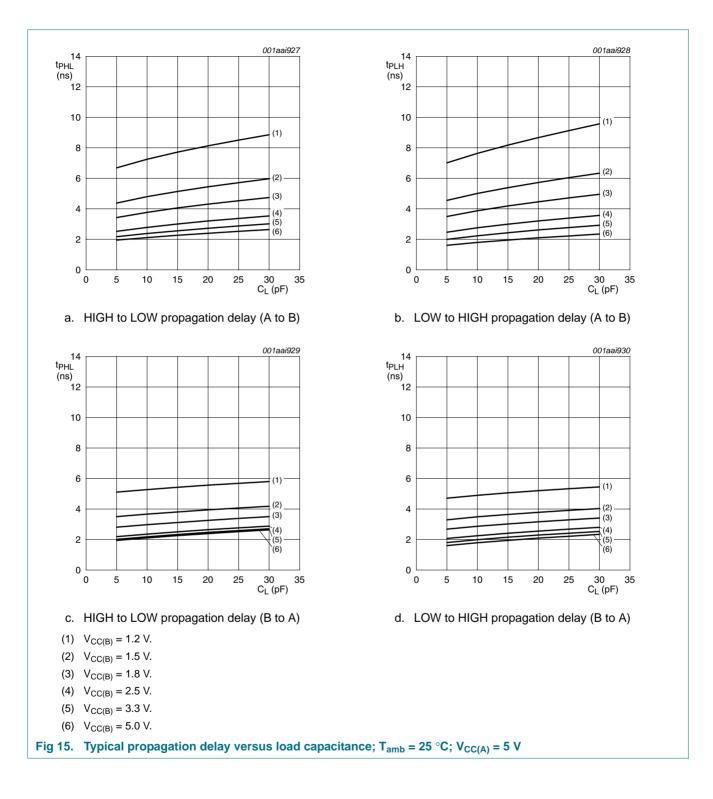
Supply voltage	Input		Load		V _{EXT}			
V _{CC(A)} , V _{CC(B)}	VI <mark>[1]</mark>	∆t/∆V[2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
1.2 V to 5.5 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

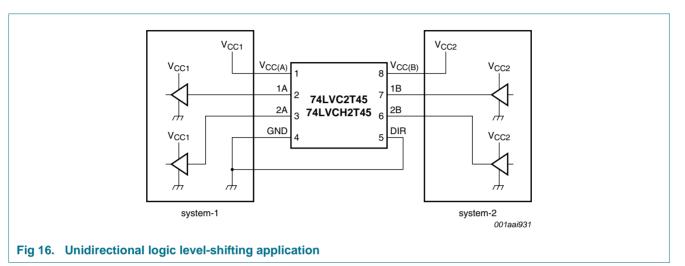

[1] V_{CCI} is the supply voltage associated with the data input port.


[3] V_{CCO} is the supply voltage associated with the output port.

Dual supply translating transceiver; 3-state




13. Typical propagation delay characteristics



Dual supply translating transceiver; 3-state

14. Application information

14.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 16</u> is an example of the 74LVC2T45; 74LVCH2T45 being used in an unidirectional logic level-shifting application.

Table 16.	Description of u	inidirectional logi	c level-shifting application
Pin	Name	Function	Description
1	V _{CC(A)}	V _{CC1}	supply voltage of system-1 (1.2 V to 5.5 V)
2	1A	OUT	output level depends on V _{CC1} voltage
3	2A	OUT	output level depends on V _{CC1} voltage
4	GND	GND	device GND
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	2B	IN	input threshold value depends on V _{CC2} voltage
7	1B	IN	input threshold value depends on V _{CC2} voltage
8	V _{CC(B)}	V _{CC2}	supply voltage of system-2 (1.2 V to 5.5 V)

14.2 Bidirectional logic level-shifting application

dense de ser el la sela de ser la ballador en ser de se de s

Figure 17 shows the 74LVC2T45; 74LVCH2T45 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions.

1-1- AC

Dual supply translating transceiver; 3-state

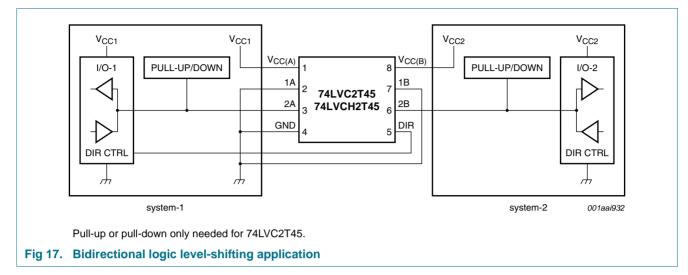


Table 17 gives a sequence that will illustrate data transmission from system-1 to system-2 and then from system-2 to system-1.

State	DIR CTRL	I/O-1	I/O-2	Description						
1	Н	output	input	system-1 data to system-2						
2	Н	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold						
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 still are disabled. The bus-line state depends on bus hold						
4	L	input	output	system-2 data to system-1						

Table 17. Description of bidirectional logic level-shifting application^[1]

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

14.3 Power-up considerations

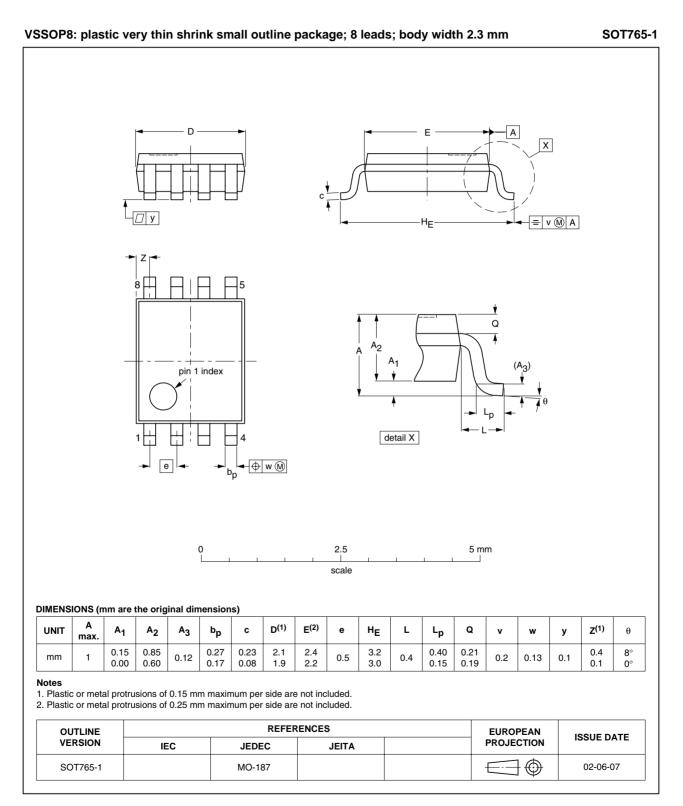
The device is designed such that no special power-up sequence is required other than GND being applied first.

Table 18.	Typical	total	supply	current	(I _{CC(A)}	+ Icc	C(B))
-----------	---------	-------	--------	---------	---------------------	-------	------	---

V _{CC(A)}	V _{CC(B)}	V _{CC(B)}								
	0 V	1.8 V	2.5 V	3.3 V	5.0 V					
0 V	0	< 1	< 1	< 1	< 1	μA				
1.8 V	< 1	< 2	< 2	< 2	2	μA				
2.5 V	< 1	< 2	< 2	< 2	< 2	μA				
3.3 V	< 1	< 2	< 2	< 2	< 2	μA				
5.0 V	< 1	2	< 2	< 2	< 2	μA				

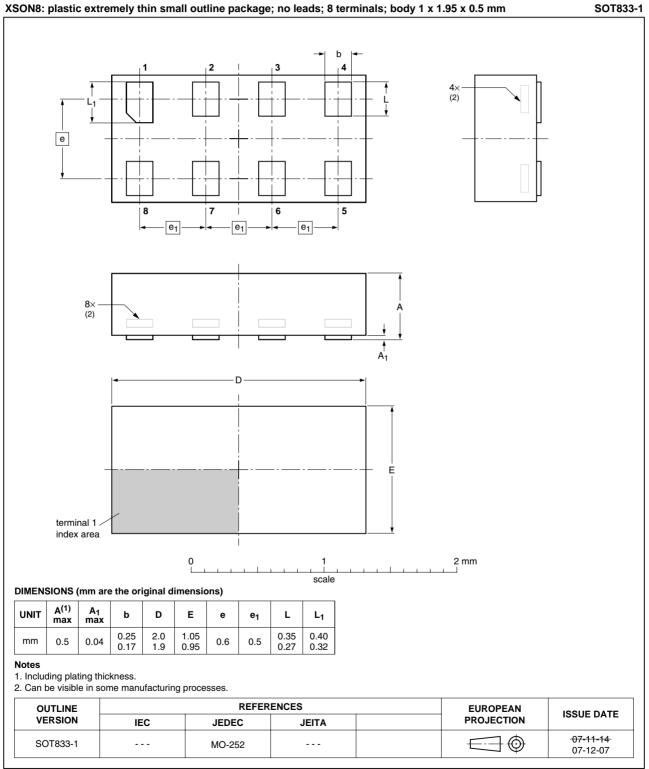
Dual supply translating transceiver; 3-state

14.4 Enable times


Calculate the enable times for the 74LVC2T45; 74LVCH2T45 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74LVC2T45; 74LVCH2T45 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

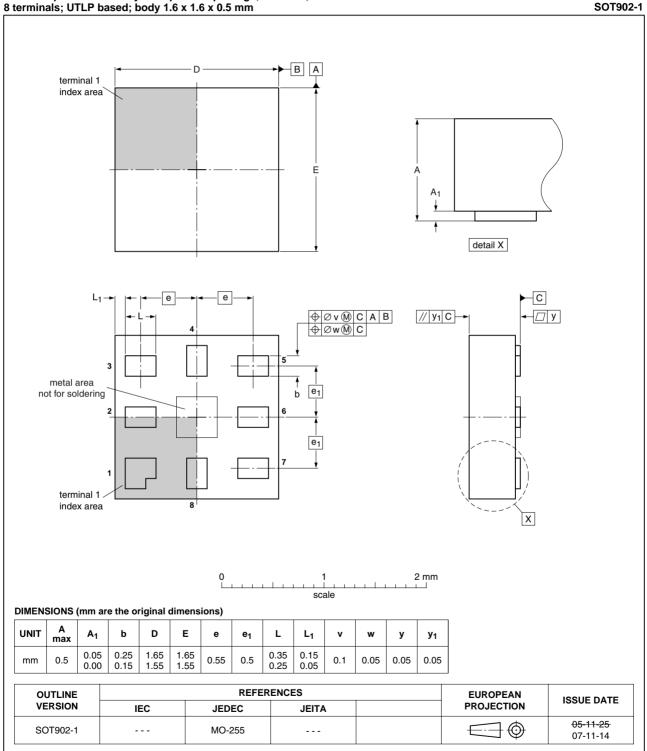

Dual supply translating transceiver; 3-state

15. Package outline

Fig 18. Package outline SOT765-1 (VSSOP8)

Dual supply translating transceiver; 3-state

Fig 19. Package outline SOT833-1 (XSON8)


Dual supply translating transceiver; 3-state

XSON8U: plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body 3 x 2 x 0.5 mm

Fig 20. Package outline SOT996-2 (XSON8U)

Dual supply translating transceiver; 3-state

XQFN8U: plastic extremely thin quad flat package; no leads; 8 terminals; UTLP based; body 1.6 x 1.6 x 0.5 mm

Fig 21. Package outline SOT902-1 (XQFN8U)

Dual supply translating transceiver; 3-state

16. Abbreviations

Table 19.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

17. Revision history

Table 20.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH2T45_3	20100119	Product data sheet	-	74LVC_LVCH2T45_2
Modifications:	• <u>Table 6</u> : inpu	t transition rise and fall rate co	onditions and limits cha	anged.
74LVC_LVCH2T45_2	20090205	Product data sheet	-	74LVC_LVCH2T45_1
74LVC_LVCH2T45_1	20081118	Product data sheet	-	-

Dual supply translating transceiver; 3-state

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual supply translating transceiver; 3-state

20. Contents

General description 1
Features 1
Ordering information 2
Marking 2
Functional diagram 3
Pinning information 3
Pinning 3
Pin description 4
Functional description 4
Limiting values 5
Recommended operating conditions 5
Static characteristics 6
Dynamic characteristics 10
Waveforms 15
Typical propagation delay characteristics 17
Application information
Unidirectional logic level-shifting application . 23
Bidirectional logic level-shifting application 23
Power-up considerations 24
Enable times 25
Package outline 26
Abbreviations 30
Revision history 30
Legal information 31
Data sheet status 31
Definitions 31
Disclaimers 31
Trademarks 31
Contact information 31
Contents 32

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

founded by
PHILIPS

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 January 2010 Document identifier: 74LVC_LVCH2T45_3

All rights reserved.